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Dynamics of the breakdown of granular clusters
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Recently van der Meeret al. studied the breakdown of a granular cluster@Phys. Rev. Lett.88, 174302
~2002!#. We reexamine this problem using an urn model, which takes into account fluctuations and finite-size
effects. General arguments are given for the absence of a continuous transition when the number of urns
~compartments! is greater than two. Monte Carlo simulations show that the lifetime of a clustert diverges at
the limits of stability ast;N1/3, whereN is the number of balls. After the breakdown, depending on the
dynamical rules of our urn model, either normal or anomalous diffusion of the cluster takes place.
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I. INTRODUCTION

Dissipation of kinetic energy during inelastic collisions
gaseous granular systems has profound consequences@1,2#.
One of the most spectacular ones is the formation of spa
inhomogeneities@3#, which drastically contrast with a uni
form distribution of molecules or atoms whose dynamics
essentially elastic.

Some time ago Schlichting and Nordmeier presente
simple experiment that demonstrates some consequenc
inelasticity of granular systems@4#. They used a containe
separated into two equal compartments by a wall that h
narrow horizontal slit at a certain height. The container
filled with balls ~plastic or metallic! and subjected to vertica
shaking. For vigorous shaking the balls distribute equa
between two compartments. However, when the shakin
sufficiently mild, a nonsymmetric distribution occurs.
such a case the compartment with majority of balls, due
numerous inelastic collisions, is effectively cooler than t
other one. Consequently, less balls are leaving this comp
ment, which stabilizes such an asymmetric distribution
balls. To explain this experiment, Eggers derived a phen
enological equation for the fluxF(n) of balls leaving a given
compartment@5#

F~n!5Cn2 exp~2Bn2!. ~1!

In the above equationn is the concentration of balls in
given urn andB and C are constants that depend on t
properties of balls, typical sizes of the system, and of par
eters of shaking~the constantC may be eliminated by an
appropriate redefinition of the time scale!. In agreement with
experiment, Eq.~1! predicts for sufficiently largeB unequal
distribution of balls. The above experiment was repeated
the case when the number of compartmentsL was greater
than two by van der Weeleet al. @6#. In such a case forma
tion of unequal distribution of balls is accompanied by stro
hysteresis that is in agreement with theoretical analysis@7#.
Moreover, certain aspects of these phenomena forL52 were
approached using hydrodynamic equations@8#.
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Recently, van der Meeret al. examined the case ofL
.2 further @9#. In particular, they studied dynamics of con
figurations ~clusters! starting from all balls localized in a
single compartment. Using a theoretical model based on
~1!, they have shown that when shaking is strong enou
such a cluster breaks down and diffuses with the anoma
diffusion exponent 1/3@in the following we refer to this
model as MWL~Meer, Weele, and Lohse!#. For less vigorous
shaking, the cluster remains relatively stable and only a
some time it abruptly breaks down. Some of their predictio
were confirmed experimentally.

In the framework of the MWL model it is rather difficul
to include the effect of fluctuations. Such fluctuations mig
originate due to, for example, a finite number of balls a
especially close to critical points they might play an impo
tant role. In an attempt to take such effects into accoun
generalization of Ehrenfest’s@10# urn model was recently
examined in the caseL52 @11#. Relative simplicity of the
model allows for a detailed study of its various characte
tics.

The motivation of the present paper is to reexamine
breakdown of granular clusters using the urn model in
caseL.2. In Sec. II we define the model and present
steady-state phase diagram forL53. We also argue that, in
analogy to the Potts model in the mean-field limit, there
no continuous transitions forL.2. In Sec. III we examine
dynamics of the breakdown of clusters in a similar way
van der Meeret al. @9#. Although qualitatively our results are
similar to theirs, in our model the diffusion of the cluster
normal with the exponent 1/2. Moreover, we calculate
size dependence of the lifetime of a clustert and show that
at the limits of stability it scales asN1/3. In Sec. IV we
present a modified version of the urn model that in the ste
state reproduces the flux~1!. The diffusion of the broken-
down cluster is then shown to be anomalous with expon
1/3, as it was already found@9#. It was suggested that esse
tial features of the MWL model are independent on the p
cise form of the flux~1!, as long as it has a single hump@9#.
On the contrary, our results show that at least the diffus
exponent depends on some details of the flux and not only
its qualitative shape~in our models the flux is also a singl
hump function!. Section V contains our conclusions.
©2002 The American Physical Society05-1
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FRANÇOIS COPPEX, MICHEL DROZ, AND ADAM LIPOWSKI PHYSICAL REVIEW E66, 011305 ~2002!
II. MODEL AND ITS STEADY-STATE PROPERTIES

Our model is a straightforward generalization of the tw
urn case@11#: N particles are distributed betweenL urns and
the number of particles ini th urn is denoted asNi(( i 51

L Ni

5N). Urns are connected through slits sequentially:i th urn
is connected with (i 21)th and (i 11)th. Moreover, periodic
boundary conditions are used, i.e., first andLth urns are con-
nected. Particles in a given urn~say i th) are subject to ther
mal fluctuations and the temperatureT of this urn depends on
the number of particles in it as

T~ni !5T01D~12ni !, ~2!

whereni is a fraction of the total number of particles in
given urn (ni5Ni /N) andT0 andD are positive constants
Equation~2! is the simplest function that reproduces the fa
that due to inelastic collisions between particles, their eff
tive temperature decreases as their number in a given
increases. Next, we define the dynamics of the mode
follows.

~i! One of theN particles is selected randomly.~ii ! With
probability exp@21/T(ni)# the selected particle is placed in
randomly chosen neighboring urn, wherei is the urn of a
selected particle.

The above rules implies that the flux of particles leavi
i th urn is, up to a proportionality constant, given by

F~ni !5ni expF2
1

T~ni !
G , ~3!

whereT(ni) is defined in Eq.~2!. Let us notice that the flux
~3!, similarly to Eq.~1!, is a single hump function. Having a
expression for the flux we can write the equations of mot
as

dni

dt
5

1

2
F~ni 21!1

1

2
F~ni 11!2F~ni !, ~4!

where i 51,2, . . . ,L. Steady-state properties of this mod
can be obtained using similar analysis as in theL52 case
@11# or as forL.2 but with fluxes given by Eq.~1! @7#. The
results of this analysis in theL53 case are presented in Fi
1. In region I and II the symmetric phase (n15n25n3
51/3) is stable. The continuous line in Fig. 1, which loca
the limit of stability of this phase, is given by the followin
equation:

T05AD

3
2

2D

3
. ~5!

This equation has a very similar form to the correspond
equation in theL52 case@11#. Asymmetric solution, where
one of the urns has the majority of balls and remaining t
urns have only a small equal fraction of balls (n1.n2
5n3), is stable in region II and III. The line separating r
gions I and II can be determined only numerically as a so
tion of a transcendental equation, similarly to theL52 case
@11#. There is also a third type of solution where two ur
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contain majority of balls and the third urn has only a sm
fraction of them (n15n2.n3). Such a solution, which ha
saddlelike stability, exists only in region III. Similar solu
tions can be found for the MWL model@6,7#. An important,
qualitative difference with the caseL52, is that regions I
and III are always separated by region II where both sy
metric and asymmetric solutions are stable, hence the tric
cal point is located at the originT05D50. It means that a
phase transition between these two phases is always ac
panied by hysteresis effects. On the other hand, in thL
52 case continuous transitions are possible, which are
accompanied by hysteresis@11#. Such a behavior is actually
in agreement with experimental data and with MWL mod
@6#.

Has this qualitative difference a more general explanat
or is it rather a coincidental property? In our opinion, a
sence of continuous transitions forL.2 is a generic property
of such systems and at least to some extent could be un
stood. First, let us notice that the phase transition forL52 is
a manifestation of the spontaneous symmetry breaking in
system: in certain regime one of the two identical urns
preferentially filled with balls. Such a situation resembles
phase transition in theS51/2 Ising model, where below cer
tain temperature the up-down symmetry is broken and
system acquires spontaneous magnetization@12#. Actually,
this analogy can be confirmed more quantitatively. We ha
shown that forL52 and at the critical point the probabilit
distributions has the same moment ratios as in the Is
model in dimensiond greater than the so-called upper critic
dimension (d.4) @13#. Let us notice, that in our model ball
are selected randomly, which means that this is essentia
mean-field model. Moreover, our mode is a dynamic
spaceless model, contrary to the Ising model, which is a
tice equilibrium model. The fact that such different mode
have some similarities shows that as far as the critical beh
ior is concerned what really matters is symmetry. In bo
cases this is theZ2 symmetry that is broken below the crit
cal point.

Pushing this analogy further, we expect that forL.2 the
phase transition in our model should be similar to the ph
transition of theL-state Potts model above the critical dime
sion @14#. In theL-state Potts model at sufficiently low tem
perature one of theL symmetric ground states is prefere

FIG. 1. The steady-state phase diagram for the three-urn mo
See text for a description of phases.
5-2
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tially selected. However, it is well known that above t
upper critical dimension and forL.2 there are only discon
tinuous transitions in the Potts model@14#. Consequently, the
transition in the urn model, and most likely in related mo
els, which preservesZL symmetry of compartments, shou
be discontinuous.

Let us notice that one can easily break the symmetry
the compartments, e.g., changing the boundary conditi
which in our analogy introduces some asymmetry in
Potts model. It is possible that in such a case the sys
effectively will become similar to theL52 system and will
exhibit a continuous transition. Finally, we expect that
L.3 the phase diagram should be topologically similar
the one forL53 shown in Fig. 1.

III. DYNAMICAL PROPERTIES OF CLUSTER
CONFIGURATIONS

In the present section we study certain dynamical prop
ties of cluster configurations. We used Monte Carlo simu
tion. Since it is rather straightforward, we omit a more d
tailed description of the numerical implementation of t
dynamical rules of our model. Initially, we place all balls
one urn and examine its subsequent evolution. If the par
etersT0 and D are such that the system is in region I th
such a cluster is unstable and after some time due to fluc
tions it breaks down and balls spread throughout all ur
This is illustrated in Fig. 2 that shows the concentration
balls in the urn in which the balls were initially placed. L
us notice that~i! the breakdown is relatively abrupt and du
ing the evolution up to the breakdown the concentration
balls only slightly decreases;~ii ! upon approaching the line
separating regions I and II the lifetime of the clustert in-
creases. Since in region II the asymmetric state has an
nite lifetime it means thatt must diverge upon approachin
this region. This behavior is seen in Fig. 3. In addition to t
three-urn case we also made analogous measurementst
for L55 and 7 and the results are also shown in Fig. 3.

FIG. 2. The time evolution of the fraction of balls of the clust
ncl close to the limits of stability of the asymmetric phase (N55
3104, L53). The values ofT0 are indicated. ForD50.3 the
limit of stability of the asymmetric phase is atT0

50.169829772 . . . For a larger number ofballs N, stochastic fluc-
tuations will diminish.
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us notice that results presented in Figs. 2 and 3 are simila
those obtained by van der Meer@9#, although they are pa
rametrized by a different variable.

The limit of stability of the asymmetric phase can be r
garded as a critical point. Thus, we expect that exactly at
point, e.g., the lifetimet has a power-law divergencet
5Nz, andz.0. Such a behavior is shown in Fig. 4. Fro
the slope of the straight line, which is a least-square fit to
data we estimatez50.32(3). Let usnotice that in the two-
urn model at the limits of stabilityt exhibits a very similar
divergence@11#. In the caseL52 more precise calculation
were possible strongly suggesting thatz51/3 that is also
consistent with the present three-urn model result. Let
emphasize that because in our model the number of bal
finite, we can study size dependent quantities as show
Fig. 4. Such calculations would not be possible for mod
solely based on steady-state equations.

Finally, let us examine the breakdown of a cluster in t
many-urn caseL@1. In such a case a continuous approach
the MWL model shows that after breaking down, the clus
diffuses with the anomalous exponent 1/3@9#. Results of our
simulations are shown in Fig. 5. From these data we c
clude that spreading of a cluster occurs with the ordin

FIG. 3. The average lifetime of a clustert as a function ofT0

for different number of urnsL. Each point is an average of at lea
300 runs.

FIG. 4. The average lifetime of a clustert as a function of the
number of ballsN at the limits of stability of the asymmetric phas
Each point is an average of at least 300 runs.
5-3
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FRANÇOIS COPPEX, MICHEL DROZ, AND ADAM LIPOWSKI PHYSICAL REVIEW E66, 011305 ~2002!
exponent 1/2 rather than anomalously. Ordinary diffusion
our model can be also easily explained analytically apply
basically the same continuous approach as used in Ref.@9#.
In this approach the set of equations of motion~4! is trans-
formed into a partial differential equation. Then, one imm
diately realizes that the linear term in front of the exponen
Eq. ~3! leads to the ordinary diffusion equation. On the oth
hand, the anomalous diffusion of MWL model can be trac
back to the quadratic~in n) term in the flux in Eq.~1!. This
quadratic term is related with two-particle collisions@9#.

IV. THE PAIR MODEL

One can easily construct urn models for which the expr
sion for the flux will have a different form. In particula
redefining the effective temperature~2! and drawing each
time a pair of balls we obtain an urn model with the flux
exactly the same form as Eq.~1!. This dynamics takes into
account some of the two particles correlations. It allows u
recover some properties of the MWL model and estab
further results.

The model, which we call a pair model, is similar to th
previously described one, except that its dynamics is n
defined as follows.~i! Two different balls are selected ran
domly. ~ii ! If and only if the two balls are in the same ur
with probability exp@2Bni

2# the selected balls are placed
the same randomly chosen neighboring urn, wherei is the
urn of the selected particles.

One can easily see that the probability that two random
selected balls belong to thei th urn is given as (Ni /N)(Ni

21)/(N21), which forN→` becomesni
2 . Multiplying ni

2

with the transition probability exp@2Bni
2# we obtain that the

flux in the pair model is proportional to Eq.~1!. It means that
as far as the steady-state properties are concerned, the
model is equivalent to the MWL@6,7#. In particular, forL
52 one easily obtains the critical valueB54 for the con-
tinuous transition between the symmetric (B,4) and asym-
metric phase (B.4). For L53 one obtains two critica
pointsB156.552703411 . . . andB259. The first one can

FIG. 5. The average occupancy of a central urnNcl as a function
of time t. The slope of decay is very close to 0.5 that confirms
diffusive nature of spreading (Ncl;t21/2). Each curve is obtained
from averaging over 50 independent runs.
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only be determined numerically. Similarly to Fig. 1, forB
,B2 the symmetric solution is stable whereas forB.B1 the
asymmetric solution stable. In the intervalBP@B1 ,B2# both
symmetric and asymmetric solutions are stable, which is
interval showing hysteresis with respect to the driving p
rameterB.

Qualitatively the dynamical properties of cluster config
rations in the pair model are similar to those described
preceding section. In particular, forL53 and B5B1, the
average lifetime of a clustert as a function of the number o
balls N once more shows a power-law divergencet5Nz,
with z50.31(3) suggesting thatz51/3. It shows a certain
universality of this exponent with respect to different d
namical rules.

Finally, Fig. 6 shows the diffusion of the broken-dow
cluster. Since the asymptotic slope of our data is very cl
to 1/3 we conclude that in this case the diffusion is anom
lous, as already predicted by van der Meeret al. who used
the continuous approach@9#.

The pair model and the model examined in the preced
section exhibit qualitatively similar behavior for most of th
physical quantities. The main difference is the diffusion: it
anomalous in the pair model and ordinary in model exa
ined in the preceding section. It would be desirable to exp
mentally examine the nature of diffusion in such systems

V. CONCLUSIONS

We examined twoL.2 versions of theL-urn model of
compartmentalization of vibrated sand. Our models qual
tively recover experimental findings and previous stea
state calculations. In addition, our models take into acco
fluctuations caused by the finite number of balls. Using sy
metry properties, we related them with high-dimension
Potts model and argued that forL.2 phase transitions in
such systems should be discontinuous. Although sev
quantities exhibit qualitatively a similar behavior for the tw
different versions of the model, there are important diff

e
FIG. 6. The average occupancy of a central urnNcl as a function

of time t for the pair model. The slope of decay is very close to 1
which confirms the anomalous diffusive nature of spreading (Ncl

;t21/3). Each curve is obtained from averaging over 50 indep
dent runs.
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ences too. In particular, these models predict a different
fusion of a broken-down cluster, which could be either or
nary or anomalous. It shows that the type of diffusion is ve
sensitive to dynamical rules of the model, and conseque
to the form of the flux.
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