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Dynamics of the breakdown of granular clusters
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Recently van der Meeet al. studied the breakdown of a granular clusiBhys. Rev. Lett88, 174302
(2002]. We reexamine this problem using an urn model, which takes into account fluctuations and finite-size
effects. General arguments are given for the absence of a continuous transition when the number of urns
(compartmentsis greater than two. Monte Carlo simulations show that the lifetime of a clustigrerges at
the limits of stability asr~N3 whereN is the number of balls. After the breakdown, depending on the
dynamical rules of our urn model, either normal or anomalous diffusion of the cluster takes place.
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I. INTRODUCTION Recently, van der Meeet al. examined the case df
>2 further[9]. In particular, they studied dynamics of con-
Dissipation of kinetic energy during inelastic collisions in figurations (clusters starting from all balls localized in a
gaseous granular systems has profound consequéh@s single compartment. Using a theoretical model based on Eq.
One of the most spectacular ones is the formation of spatigll), they have shown that when shaking is strong enough
inhomogeneitie§3], which drastically contrast with a uni- such a cluster breaks down and diffuses with the anomalous
form distribution of molecules or atoms whose dynamics isdiffusion exponent 1/Jin the following we refer to this
essentially elastic. model as MWL(Meer, Weele, and Loh$g For less vigorous
Some time ago Schlichting and Nordmeier presented ghaking, the cluster remains relatively stable and only after
simple experiment that demonstrates some consequencessyme time it abruptly breaks down. Some of their predictions
inelasticity of granular systemst]. They used a container were confirmed experimentally.
separated into two equal compartments by a wall that has a In the framework of the MWL model it is rather difficult
narrow horizontal slit at a certain height. The container isto include the effect of fluctuations. Such fluctuations might
filled with balls (plastic or metalli¢ and subjected to vertical originate due to, for example, a finite number of balls and
shaking. For vigorous shaking the balls distribute equallyespecially close to critical points they might play an impor-
between two compartments. However, when the shaking igant role. In an attempt to take such effects into account a
sufficiently mild, a nonsymmetric distribution occurs. In generalization of Ehrenfestgl0] urn model was recently
such a case the compartment with majority of balls, due texamined in the cask=2 [11]. Relative simplicity of the
numerous inelastic collisions, is effectively cooler than themodel allows for a detailed study of its various characteris-
other one. Consequently, less balls are leaving this compartics.
ment, which stabilizes such an asymmetric distribution of The motivation of the present paper is to reexamine the
balls. To explain this experiment, Eggers derived a phenombreakdown of granular clusters using the urn model in the
enological equation for the fluk(n) of balls leaving a given caseL>2. In Sec. Il we define the model and present its
compartmenf5] steady-state phase diagram for 3. We also argue that, in
analogy to the Potts model in the mean-field limit, there are
no continuous transitions fdr>2. In Sec. Ill we examine
F(n)=Cn?exp(—Bn?). (1)  dynamics of the breakdown of clusters in a similar way as
van der Meeget al.[9]. Although qualitatively our results are
similar to theirs, in our model the diffusion of the cluster is
In the above equatiom is the concentration of balls in a normal with the exponent 1/2. Moreover, we calculate the
given urn andB and C are constants that depend on thesize dependence of the lifetime of a clusteand show that
properties of balls, typical sizes of the system, and of paramat the limits of stability it scales asl*. In Sec. IV we
eters of shakingthe constantC may be eliminated by an present a modified version of the urn model that in the steady
appropriate redefinition of the time scalén agreement with  state reproduces the flud). The diffusion of the broken-
experiment, Eq(1) predicts for sufficiently largd8 unequal  down cluster is then shown to be anomalous with exponent
distribution of balls. The above experiment was repeated iri/3, as it was already fourf@®]. It was suggested that essen-
the case when the number of compartmente/as greater tial features of the MWL model are independent on the pre-
than two by van der Weelet al. [6]. In such a case forma- cise form of the flux(1), as long as it has a single hurf.
tion of unequal distribution of balls is accompanied by strongOn the contrary, our results show that at least the diffusion
hysteresis that is in agreement with theoretical analy8is exponent depends on some details of the flux and not only on
Moreover, certain aspects of these phenomena fo2 were its qualitative shapéin our models the flux is also a single
approached using hydrodynamic equatip8lks hump function. Section V contains our conclusions.
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Il. MODEL AND ITS STEADY-STATE PROPERTIES 0.25

Our model is a straightforward generalization of the two-
urn casg11]: N particles are distributed betweé&nurns and
the number of particles inth urn is denoted asli(EiLlei
=N). Urns are connected through slits sequentialllg:urn
is connected withi(—1)th and {+1)th. Moreover, periodic
boundary conditions are used, i.e., first il urns are con-
nected. Particles in a given ufsayith) are subject to ther-
mal fluctuations and the temperatdref this urn depends on
the number of particles in it as
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T(n)=To+A(1—ny), (2 A

wheren; is a fraction of the total number of particles in a  FIG. 1. The steady-state phase diagram for the three-urn model.
given urn f;=N;/N) and T, andA are positive constants. See text for a description of phases.
Equation(2) is the simplest function that reproduces the fact
that due to inelastic collisions between particles, their effeccontain majority of balls and the third urn has only a small
tive temperature decreases as their number in a given uffaction of them (;=n,>n3). Such a solution, which has
increases. Next, we define the dynamics of the model a§3dd|9|ike Stability, exists onIy in region lll. Similar solu-
follows. tions can be found for the MWL modg6,7]. An important,

(i) One of theN particles is selected randomigi) With qualitative difference with the cade=2, is that regions |

probability exip — 1/T(n;)] the selected particle is placed in a @nd lll are always separated by region Il where both sym-
randomly chosen neighboring urn, wherés the urn of a Metric and asymmetric solutions are stable, hence the tricriti-

selected particle. cal point is located at the origifipc=A=0. It means that a
phase transition between these two phases is always accom-
The above rules implies that the flux of particles leavingpanied by hysteresis effects. On the other hand, inlthe
ith urn is, up to a proportionality constant, given by =2 case continuous transitions are possible, which are not
accompanied by hystereditl]. Such a behavior is actually
F(n)=n, ex;{— 1 , 3) in agreement with experimental data and with MWL model
T(n;) [6].

Has this qualitative difference a more general explanation
whereT(n;) is defined in Eq(2). Let us notice that the flux or is it rather a coincidental property? In our opinion, ab-
(3), similarly to Eq.(1), is a single hump function. Having an  sence of continuous transitions for-2 is a generic property
expression for the flux we can write the equations of motiorof such systems and at least to some extent could be under-
as stood. First, let us notice that the phase transitior_fer2 is

a manifestation of the spontaneous symmetry breaking in the
ﬂz EF(ni_l)Jr EF(ni+1)_F(ni)a (4) system: i_n certain rggime one of the_ two_ identical urns is
dt 2 2 preferentially filled with balls. Such a situation resembles the
) ) ) phase transition in th8=1/2 Ising model, where below cer-
wherei=1.2,... L. Steady-state properties of this model tain temperature the up-down symmetry is broken and the
can be obtained Using similar analySiS as in the2 case System acquires Spontaneous magnetizaﬁm]_ Actua”y,

[11] or as forL>2 but with fluxes given by Eq(1) [7]. The  this analogy can be confirmed more quantitatively. We have
results of this analysis in the=3 case are presented in Fig. shown that forl.=2 and at the critical point the probability
1. In region | and Il the symmetric phase;=n,=n3  distributions has the same moment ratios as in the Ising
=1/3) is stable. The continuous line in Fig. 1, which locatesmodel in dimensiom greater than the so-called upper critical
the limit of stability of this phase, is given by the following dimension ¢1>4) [13]. Let us notice, that in our model balls

equation: are selected randomly, which means that this is essentially a
mean-field model. Moreover, our mode is a dynamical,

_ \/§_ % 5) spaceless model, contrary to the Ising model, which is a lat-
0 3 37 tice equilibrium model. The fact that such different models

have some similarities shows that as far as the critical behav-
This equation has a very similar form to the correspondindor is concerned what really matters is symmetry. In both
equation in the.=2 case[11]. Asymmetric solution, where cases this is th&, symmetry that is broken below the criti-
one of the urns has the majority of balls and remaining twocal point.
urns have only a small equal fraction of balls;&n, Pushing this analogy further, we expect that for 2 the
=n3), is stable in region Il and Ill. The line separating re- phase transition in our model should be similar to the phase
gions | and Il can be determined only numerically as a soluiransition of the_-state Potts model above the critical dimen-
tion of a transcendental equation, similarly to the 2 case sion[14]. In the L-state Potts model at sufficiently low tem-
[11]. There is also a third type of solution where two urnsperature one of th& symmetric ground states is preferen-
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FIG. 2. The time evolution of the fraction of balls of the cluster
n., close to the limits of stability of the asymmetric phas¢=<(5
x10*, L=3). The values ofT, are indicated. For=0.3 the
limit of stability of the asymmetric phase is afl
=0.16982972 ... For a larger number dfalls N, stochastic fluc-
tuations will diminish. us notice that results presented in Figs. 2 and 3 are similar to

those obtained by van der MeE3], although they are pa-

rametrized by a different variable.
tially selected. However, it is well known that above the The limit of stability of the asymmetric phase can be re-
upper critical dimension and fdr>2 there are only discon- garded as a critical point. Thus, we expect that exactly at this
tinuous transitions in the Potts mod&#]. Consequently, the point, e.g., the lifetimer has a power-law divergence
transition in the urn model, and most likely in related mod-=N?* andz>0. Such a behavior is shown in Fig. 4. From
els, which preserveg, symmetry of compartments, should the slope of the straight line, which is a least-square fit to our
be discontinuous. data we estimate=0.323). Let usnotice that in the two-

Let us notice that one can easily break the symmetry ofirn model at the limits of stability- exhibits a very similar
the compartments, e.g., changing the boundary conditionslivergence[11]. In the casd.=2 more precise calculations
which in our analogy introduces some asymmetry in thewere possible strongly suggesting that 1/3 that is also
Potts model. It is possible that in such a case the systemonsistent with the present three-urn model result. Let us
effectively will become similar to thé =2 system and will emphasize that because in our model the number of balls is
exhibit a continuous transition. Finally, we expect that forfinite, we can study size dependent quantities as shown in
L>3 the phase diagram should be topologically similar toFig. 4. Such calculations would not be possible for models
the one forL =3 shown in Fig. 1. solely based on steady-state equations.

Finally, let us examine the breakdown of a cluster in the
many-urn cas&>1. In such a case a continuous approach to
the MWL model shows that after breaking down, the cluster
diffuses with the anomalous exponent [#83. Results of our

In the present section we study certain dynamical propersimulations are shown in Fig. 5. From these data we con-
ties of cluster configurations. We used Monte Carlo simulaclude that spreading of a cluster occurs with the ordinary
tion. Since it is rather straightforward, we omit a more de-

FIG. 3. The average lifetime of a clusteras a function ofT
for different number of urn&. Each point is an average of at least
300 runs.

IIl. DYNAMICAL PROPERTIES OF CLUSTER
CONFIGURATIONS

tailed description of the numerical implementation of the 4 , , ,
dynamical rules of our model. Initially, we place all balls in A=0.3,T;=0.169829772..., L=3
one urn and examine its subsequent evolution. If the param- 38 f 1
etersTy and A are such that the system is in region | then -
such a cluster is unstable and after some time due to fluctua- 361 s
tions it breaks down and balls spread throughout all urns. & e
This is illustrated in Fig. 2 that shows the concentration of 3 T 7
balls in the urn in which the balls were initially placed. Let 32 | /,/’”
us notice thati) the breakdown is relatively abrupt and dur- e
ing the evolution up to the breakdown the concentration of 3t /*
balls only slightly decreasesii) upon approaching the line -
separating regions | and Il the lifetime of the clustein- 2.8 : : : ; :
. . ; . o 2 2.5 3 35 4 45 5
creases. Since in region |l the asymmetric state has an infi- log o)

nite lifetime it means that must diverge upon approaching
this region. This behavior is seen in Fig. 3. In addition to the  FIG. 4. The average lifetime of a clusteras a function of the

three-urn case we also made analogous measurements ohumber of ballsN at the limits of stability of the asymmetric phase.
for L=5 and 7 and the results are also shown in Fig. 3. LeEach point is an average of at least 300 runs.
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FIG. 6. The average occupancy of a centralNgpas a function

of time t. The slope of decay is very close to 0.5 that confirms theof time t for the pair model. The slope of decay is very close to 1/3

diffusive nature of spreading\;~t~Y?). Each curve is obtained which confirms the anomalous diffusive nature of spreadiNg (

from averaging over 50 independent runs. ~t~ 3, Each curve is obtained from averaging over 50 indepen-
dent runs.

exponent 1/2 rather than anomalously. Ordinary diffusion in
our model can be also easily explained analytically applyingnly be determined numerically. Similarly to Fig. 1, fBr
basically the same continuous approach as used in[Bef. <B, the symmetric solution is stable whereas Bor B, the
In this approach the set of equations of moti@his trans-  asymmetric solution stable. In the intenBk [ B, ,B,] both
formed into a partial differential equation. Then, one imme-symmetric and asymmetric solutions are stable, which is the
diately realizes that the linear term in front of the exponent ininterval showing hysteresis with respect to the driving pa-
Eq. (3) leads to the ordinary diffusion equation. On the otherrameterB.
hand, the anomalous diffusion of MWL model can be traced Qualitatively the dynamical properties of cluster configu-
back to the quadrati@in n) term in the flux in Eq(1). This  rations in the pair model are similar to those described in
quadratic term is related with two-particle collisiof$y. preceding section. In particular, far=3 and B=B,, the
average lifetime of a cluster as a function of the number of
balls N once more shows a power-law divergence N?,
with z=0.31(3) suggesting that=1/3. It shows a certain
One can easily construct urn models for which the expresuniversality of this exponent with respect to different dy-
sion for the flux will have a different form. In particular, namical rules.
redefining the effective temperatuf@) and drawing each Finally, Fig. 6 shows the diffusion of the broken-down
time a pair of balls we obtain an urn model with the flux of cluster. Since the asymptotic slope of our data is very close
exactly the same form as Efl). This dynamics takes into to 1/3 we conclude that in this case the diffusion is anoma-
account some of the two particles correlations. It allows us tdous, as already predicted by van der Me¢al. who used
recover some properties of the MWL model and establistthe continuous approad®].
further results. The pair model and the model examined in the preceding
The model, which we call a pair model, is similar to the section exhibit qualitatively similar behavior for most of the
previously described one, except that its dynamics is nowphysical quantities. The main difference is the diffusion: it is
defined as follows(i) Two different balls are selected ran- anomalous in the pair model and ordinary in model exam-
domly. (i) If and only if the two balls are in the same urn, ined in the preceding section. It would be desirable to experi-
with probability exm—Brﬂ the selected balls are placed in mentally examine the nature of diffusion in such systems.
the same randomly chosen neighboring urn, wheisethe
urn of the selected particles.

IV. THE PAIR MODEL

One can easily see that the probability that two randomly

selected balls belong to thi¢h urn is given as Nl;/N)(N;
—1)/(N—1), which forN— becomes?. Multiplying n?
with the transition probability exXp- quz] we obtain that the
flux in the pair model is proportional to E€{). It means that

V. CONCLUSIONS

We examined twd.>2 versions of the_-urn model of
compartmentalization of vibrated sand. Our models qualita-
tively recover experimental findings and previous steady-
state calculations. In addition, our models take into account

as far as the steady-state properties are concerned, the phirctuations caused by the finite number of balls. Using sym-

model is equivalent to the MWIS6,7]. In particular, forL

=2 one easily obtains the critical vallg=4 for the con-
tinuous transition between the symmetrig<{4) and asym-
metric phase B>4). For L=3 one obtains two critical
pointsB;=6.552703411 ... anB,=9. The first one can

metry properties, we related them with high-dimensional
Potts model and argued that far-2 phase transitions in
such systems should be discontinuous. Although several
quantities exhibit qualitatively a similar behavior for the two
different versions of the model, there are important differ-
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